CopAb, the second N-terminal soluble domain of Bacillus subtilis CopA, dominates the Cu(I)-binding properties of CopAab.

نویسندگان

  • Liang Zhou
  • Chloe Singleton
  • Nick E Le Brun
چکیده

The Cu(I)-detoxifying P-type ATPase CopA from Bacillus subtilis contains two N-terminal soluble domains, CopAa and CopAb, connected by a short linker. This arrangement is extremely common in prokaryotic Cu(I) transporters and is also found amongst the multiple soluble domains of eukaryotic homologues. Previous studies of a protein containing only these domains (CopAab) revealed complex Cu(I)-binding properties: both domains are able to bind Cu(I) extremely tightly and, at levels of Cu(I) > 1 per CopAab, the protein undergoes dimerisation, yielding a highly luminescent multi-Cu(I) bound species (Singleton and Le Brun, Dalton Trans., 2009, 688-696). To investigate this complex Cu(I)-binding behaviour and, in particular, to determine the contributions of the two domains to the overall behaviour of the N-terminal part, we generated and purified each domain in isolation. Here, we report studies of the second domain, CopAb. The protein was found to bind Cu(I) with an extremely high affinity (K = ~1 × 10(18) M(-1)) and remained as a monomer up to a level of 1 Cu(I) per protein. Above this level, the protein dimerised, generating a weakly luminescent species. Studies of the acid-base properties of the binding motif Cys residues revealed pK(a) values of < ~5 and ~6.3, adding further support to the proposal that high Cu(I)-affinity is correlated with low proton affinity. Exchange of Cu(I) between the protein and a high affinity chelator was found to occur rapidly via Cu(I)-mediated association, a process that is relevant to in vivo Cu(I) trafficking. Overall, the Cu(I)-binding properties of CopAb are very similar to those of the two-domain protein CopAab, indicating that this domain plays a dominant role in determining the binding properties of CopAab.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new structural paradigm in copper resistance in Streptococcus pneumoniae

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized Cu...

متن کامل

High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ.

CopZ, an Atx1-like copper chaperone from the bacterium Bacillus subtilis, functions as part of a complex cellular machinery for Cu(I) trafficking and detoxification, in which it interacts specifically with the transmembrane Cu(I)-transporter CopA. Here we demonstrate that the cysteine residues of the MXCXXC Cu(I)-binding motif of CopZ have low proton affinities, with both exhibiting pK(a) value...

متن کامل

Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase

Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational altera...

متن کامل

Enhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus

Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...

متن کامل

The S2 Cu(i) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance.

Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(i) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(i) cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 41 19  شماره 

صفحات  -

تاریخ انتشار 2012